Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arthritis Rheumatol ; 76(2): 181-191, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37610274

RESUMEN

OBJECTIVE: Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA) and have long been regarded as pathogenic. Despite substantial in vitro evidence supporting this claim, reports investigating the proinflammatory effects of ACPAs in animal models of arthritis are rare and include mixed results. Here, we sequenced the plasmablast antibody repertoire of a patient with RA and functionally characterized the encoded ACPAs. METHODS: We expressed ACPAs from the antibody repertoire of a patient with RA and characterized their autoantigen specificities on antigen arrays and enzyme-linked immunosorbent assays. Binding affinities were estimated by bio-layer interferometry. Select ACPAs (n = 9) were tested in the collagen antibody-induced arthritis (CAIA) mouse model to evaluate their effects on joint inflammation. RESULTS: Recombinant ACPAs bound preferentially and with high affinity (nanomolar range) to citrullinated (cit) autoantigens (primarily histones and fibrinogen) and to auto-cit peptidylarginine deiminase 4 (PAD4). ACPAs were grouped for in vivo testing based on their predominant cit-antigen specificities. Unexpectedly, injections of recombinant ACPAs significantly reduced paw thickness and arthritis severity in CAIA mice as compared with isotype-matched control antibodies (P ≤ 0.001). Bone erosion, synovitis, and cartilage damage were also significantly reduced (P ≤ 0.01). This amelioration of CAIA was observed for all the ACPAs tested and was independent of cit-PAD4 and cit-fibrinogen specificities. Furthermore, disease amelioration was more prominent when ACPAs were injected at earlier stages of CAIA than at later phases of the model. CONCLUSION: Recombinant patient-derived ACPAs ameliorated CAIA. Their antiinflammatory effects were more preventive than therapeutic. This study highlights a potential protective role for ACPAs in arthritis.


Asunto(s)
Ácidos Aminosalicílicos , Artritis Experimental , Artritis Reumatoide , Humanos , Animales , Ratones , Anticuerpos Antiproteína Citrulinada , Autoanticuerpos , Desiminasas de la Arginina Proteica , Fibrinógeno/metabolismo , Colágeno
2.
Cancer Immunol Res ; 11(6): 732-746, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37023414

RESUMEN

The development of immune checkpoint-based immunotherapies has been a major advancement in the treatment of cancer, with a subset of patients exhibiting durable clinical responses. A predictive biomarker for immunotherapy response is the preexisting T-cell infiltration in the tumor immune microenvironment (TIME). Bulk transcriptomics-based approaches can quantify the degree of T-cell infiltration using deconvolution methods and identify additional markers of inflamed/cold cancers at the bulk level. However, bulk techniques are unable to identify biomarkers of individual cell types. Although single-cell RNA sequencing (scRNA-seq) assays are now being used to profile the TIME, to our knowledge there is no method of identifying patients with a T-cell inflamed TIME from scRNA-seq data. Here, we describe a method, iBRIDGE, which integrates reference bulk RNA-seq data with the malignant subset of scRNA-seq datasets to identify patients with a T-cell inflamed TIME. Using two datasets with matched bulk data, we show iBRIDGE results correlated highly with bulk assessments (0.85 and 0.9 correlation coefficients). Using iBRIDGE, we identified markers of inflamed phenotypes in malignant cells, myeloid cells, and fibroblasts, establishing type I and type II interferon pathways as dominant signals, especially in malignant and myeloid cells, and finding the TGFß-driven mesenchymal phenotype not only in fibroblasts but also in malignant cells. Besides relative classification, per-patient average iBRIDGE scores and independent RNAScope quantifications were used for threshold-based absolute classification. Moreover, iBRIDGE can be applied to in vitro grown cancer cell lines and can identify the cell lines that are adapted from inflamed/cold patient tumors.


Asunto(s)
Neoplasias , Análisis de Expresión Génica de una Sola Célula , Humanos , RNA-Seq/métodos , Perfilación de la Expresión Génica/métodos , Linfocitos T , Biomarcadores , Análisis de la Célula Individual/métodos , Microambiente Tumoral/genética
3.
Sci Transl Med ; 15(684): eabq8476, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36812347

RESUMEN

Periodontal disease is more common in individuals with rheumatoid arthritis (RA) who have detectable anti-citrullinated protein antibodies (ACPAs), implicating oral mucosal inflammation in RA pathogenesis. Here, we performed paired analysis of human and bacterial transcriptomics in longitudinal blood samples from RA patients. We found that patients with RA and periodontal disease experienced repeated oral bacteremias associated with transcriptional signatures of ISG15+HLADRhi and CD48highS100A2pos monocytes, recently identified in inflamed RA synovia and blood of those with RA flares. The oral bacteria observed transiently in blood were broadly citrullinated in the mouth, and their in situ citrullinated epitopes were targeted by extensively somatically hypermutated ACPAs encoded by RA blood plasmablasts. Together, these results suggest that (i) periodontal disease results in repeated breaches of the oral mucosa that release citrullinated oral bacteria into circulation, which (ii) activate inflammatory monocyte subsets that are observed in inflamed RA synovia and blood of RA patients with flares and (iii) activate ACPA B cells, thereby promoting affinity maturation and epitope spreading to citrullinated human antigens.


Asunto(s)
Artritis Reumatoide , Enfermedades Periodontales , Humanos , Autoanticuerpos , Mucosa Bucal , Formación de Anticuerpos , Epítopos , Bacterias
4.
J Allergy Clin Immunol ; 149(1): 358-368, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33974929

RESUMEN

BACKGROUND: IgG4-related disease (IgG4-RD) is a fibroinflammatory condition involving loss of B-cell tolerance and production of autoantibodies. However, the relevant targets and role of these aberrant humoral immune responses are not defined. OBJECTIVE: Our aim was to identify novel autoantibodies and autoantigen targets that promote pathogenic responses in IgG4-RD. METHODS: We sequenced plasmablast antibody repertoires in patients with IgG4-RD. Representative mAbs were expressed and their specificities characterized by using cytokine microarrays. The role of anti-IL-1 receptor antagonist (IL-1RA) autoantibodies was investigated by using in vitro assays. RESULTS: We identified strong reactivity against human IL-1RA by using a clonally expanded plasmablast-derived mAb from a patient with IgG4-RD. Plasma from patients with IgG4-RD exhibited elevated levels of reactivity against IL-1RA compared with plasma from the controls and neutralized IL-1RA activity, resulting in inflammatory and fibrotic mediator production in vitro. IL-1RA was detected in lesional tissues from patients with IgG4-RD. Patients with anti-IL-1RA autoantibodies of the IgG4 subclass had greater numbers of organs affected than did those without anti-IL-1RA autoantibodies. Peptide analyses identified IL-1RA epitopes targeted by anti-IL-1RA antibodies at sites near the IL-1RA/IL-1R interface. Serum from patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) also had elevated levels of anti-IL-1RA autoantibodies compared with those of the controls. CONCLUSION: A subset of patients with IgG4-RD have anti-IL-1RA autoantibodies, which promote proinflammatory and profibrotic meditator production via IL-1RA neutralization. These findings support a novel immunologic mechanism underlying the pathogenesis of IgG4-RD. Anti-IL-1RA autoantibodies are also present in a subset of patients with SLE and RA, suggesting a potential common pathway in multiple autoimmune diseases.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Autoanticuerpos/sangre , Fibrosis/inmunología , Inmunoglobulina G/inmunología , Receptores de Interleucina-1/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Artritis Reumatoide/sangre , Artritis Reumatoide/inmunología , Autoantígenos , Niño , Preescolar , Femenino , Fibrosis/sangre , Humanos , Inmunoglobulina G/sangre , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/inmunología , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología , Receptores de Interleucina-1/inmunología , Adulto Joven
5.
Br J Cancer ; 124(4): 760-769, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139798

RESUMEN

BACKGROUND: The balance between immune-stimulatory and immune-suppressive mechanisms in the tumour microenvironment is associated with tumour rejection and can predict the efficacy of immune checkpoint-inhibition therapies. METHODS: We consider the observed differences between the transcriptional programmes associated with cancer types where the levels of immune infiltration predict a favourable prognosis versus those in which the immune infiltration predicts an unfavourable prognosis and defined a score named Mediators of Immune Response Against Cancer in soLid microEnvironments (MIRACLE). MIRACLE deconvolves T cell infiltration, from inhibitory mechanisms, such as TGFß, EMT and PI3Kγ signatures. RESULTS: Our score outperforms current state-of-the-art immune signatures as a predictive marker of survival in TCGA (n = 9305, HR: 0.043, p value: 6.7 × 10-36). In a validation cohort (n = 7623), MIRACLE predicts better survival compared to other immune metrics (HR: 0.1985, p value: 2.73 × 10-38). MIRACLE also predicts response to checkpoint-inhibitor therapies (n = 333). The tumour-intrinsic factors inversely associated with the reported score such as EGFR, PRKAR1A and MAP3K1 are frequently associated with immune-suppressive phenotypes. CONCLUSIONS: The association of cancer outcome with the level of infiltrating immune cells is mediated by the balance of activatory and suppressive factors. MIRACLE accounts for this balance and predicts favourable cancer outcomes.


Asunto(s)
Neoplasias/genética , Neoplasias/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Estudios de Cohortes , Bases de Datos Genéticas , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Vigilancia Inmunológica , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/mortalidad , Análisis de Supervivencia
7.
Clin Immunol ; 212: 108360, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32035179

RESUMEN

Rheumatoid arthritis (RA) is characterized by the production of anti-citrullinated protein antibodies (ACPAs). To gain insights into the relationship between ACPA-expressing B cells in peripheral blood (PB) and synovial tissue (ST), we sequenced the B cell repertoire in paired PB and ST samples from five individuals with established, ACPA+ RA. Bioinformatics analysis of paired heavy- and light-chain sequences revealed clonally-related family members shared between PB and ST. ST-derived antibody repertoires exhibited reduced diversity and increased normalized clonal family size compared to PB-derived repertoires. Functional characterization showed that seven recombinant antibodies (rAbs) expressed from subject-derived sequences from both compartments bound citrullinated antigens and immune complexes (ICs) formed using one ST-derived rAb stimulated macrophage TNF-α production. Our findings demonstrate B cell trafficking between PB and ST in subjects with RA and ST repertoires include B cells that encode ACPA capable of forming ICs that stimulate cellular responses implicated in RA pathogenesis.


Asunto(s)
Anticuerpos Antiproteína Citrulinada/inmunología , Complejo Antígeno-Anticuerpo/inmunología , Artritis Reumatoide/inmunología , Linfocitos B/inmunología , Macrófagos/inmunología , Membrana Sinovial/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Diversidad de Anticuerpos/inmunología , Biología Computacional , Humanos , Activación de Macrófagos/inmunología , Membrana Sinovial/citología
8.
Arthritis Rheumatol ; 71(4): 507-517, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30811898

RESUMEN

OBJECTIVE: Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA). While epitope spreading of the serum ACPA response is believed to contribute to RA pathogenesis, little is understood regarding how this phenomenon occurs. This study was undertaken to analyze the antibody repertoires of individuals with RA to gain insight into the mechanisms leading to epitope spreading of the serum ACPA response in RA. METHODS: Plasmablasts from the blood of 6 RA patients were stained with citrullinated peptide tetramers to identify ACPA-producing B cells by flow cytometry. Plasmablasts were single-cell sorted and sequenced to obtain antibody repertoires. Sixty-nine antibodies were recombinantly expressed, and their anticitrulline reactivities were characterized using a cyclic citrullinated peptide enzyme-linked immuosorbent assay and synovial antigen arrays. Thirty-six mutated antibodies designed either to represent ancestral antibodies or to test paratope residues critical for binding, as determined from molecular modeling studies, were also tested for anticitrulline reactivities. RESULTS: Clonally related monoclonal ACPAs and their shared ancestral antibodies each exhibited differential reactivity against citrullinated antigens. Molecular modeling identified residues within the complementarity-determining region loops and framework regions predicted to be important for citrullinated antigen binding. Affinity maturation resulted in mutations of these key residues, which conferred binding to different citrullinated epitopes and/or increased polyreactivity to citrullinated epitopes. CONCLUSION: These results demonstrate that the different somatic hypermutations accumulated by clonally related B cells during affinity maturation alter the antibody paratope to mediate epitope spreading and polyreactivity of the ACPA response in RA, suggesting that these may be key properties that likely contribute to the pathogenicity of ACPAs.


Asunto(s)
Anticuerpos Antiproteína Citrulinada/inmunología , Artritis Reumatoide/inmunología , Sitios de Unión de Anticuerpos/inmunología , Epítopos/inmunología , Péptidos Cíclicos/inmunología , Adulto , Artritis Reumatoide/sangre , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Linfocitos B/inmunología , Femenino , Humanos , Masculino , Células Plasmáticas/inmunología
9.
Arthritis Rheumatol ; 70(12): 1946-1958, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29927104

RESUMEN

OBJECTIVE: Rheumatoid arthritis (RA) is characterized by the presence of anti-citrullinated protein antibodies (ACPAs); nevertheless, the origin, specificity, and functional properties of ACPAs remain poorly understood. The aim of this study was to characterize the evolution of ACPAs by sequencing the plasmablast antibody repertoire at serial time points in patients with established RA. METHODS: Blood samples were obtained at up to 4 serial time points from 8 individuals with established RA who were positive for ACPAs by the anti-cyclic citrullinated peptide test. CD19+CD3-IgD-CD14-CD20-CD27+CD38++ plasmablasts were isolated by single-cell sorting and costained with citrullinated peptide tetramers to identify ACPA-expressing plasmablasts. Cell-specific oligonucleotide barcodes were utilized, followed by large-scale sequencing and bioinformatics analysis, to obtain error-corrected, paired heavy- and light-chain antibody gene sequences for each B cell. RESULTS: Bioinformatics analysis revealed 170 persistent plasmablast lineages in the RA blood, of which 19% included multiple isotypes. Among IgG- and IgA-expressing plasmablasts, significantly more IgA-expressing than IgG-expressing persistent lineages were observed (P < 0.01). Shared complementarity-determining region 3 sequence motifs were identified across subjects. A subset of the plasmablast lineages included members derived from later time points with divergent somatic hypermutations that encoded antibodies that bind an expanded set of citrullinated antigens. Furthermore, these recombinant, differentially mutated plasmablast antibodies formed immune complexes that stimulated higher macrophage production of tumor necrosis factor (TNF) compared to antibodies representing earlier time point-derived lineage members that were less mutated. CONCLUSION: These findings demonstrate that established RA is characterized by a persistent IgA ACPA response that exhibits ongoing affinity maturation. This observation suggests the presence of a persistent mucosal antigen that continually promotes the production of IgA plasmablasts and their affinity maturation and epitope spreading, thus leading to the generation of ACPAs that bind additional citrullinated antigens and more potently stimulate macrophage production of TNF.


Asunto(s)
Anticuerpos Antiproteína Citrulinada/inmunología , Afinidad de Anticuerpos/fisiología , Artritis Reumatoide/inmunología , Autoanticuerpos/inmunología , Epítopos/inmunología , Anciano , Anciano de 80 o más Años , Artritis Reumatoide/sangre , Linfocitos B/inmunología , Biología Computacional , Femenino , Humanos , Masculino , Persona de Mediana Edad , Células Plasmáticas/inmunología
10.
J Immunother Cancer ; 6(1): 50, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29871670

RESUMEN

Anti-cancer immunotherapy is encountering its own checkpoint. Responses are dramatic and long lasting but occur in a subset of tumors and are largely dependent upon the pre-existing immune contexture of individual cancers. Available data suggest that three landscapes best define the cancer microenvironment: immune-active, immune-deserted and immune-excluded. This trichotomy is observable across most solid tumors (although the frequency of each landscape varies depending on tumor tissue of origin) and is associated with cancer prognosis and response to checkpoint inhibitor therapy (CIT). Various gene signatures (e.g. Immunological Constant of Rejection - ICR and Tumor Inflammation Signature - TIS) that delineate these landscapes have been described by different groups. In an effort to explain the mechanisms of cancer immune responsiveness or resistance to CIT, several models have been proposed that are loosely associated with the three landscapes. Here, we propose a strategy to integrate compelling data from various paradigms into a "Theory of Everything". Founded upon this unified theory, we also propose the creation of a task force led by the Society for Immunotherapy of Cancer (SITC) aimed at systematically addressing salient questions relevant to cancer immune responsiveness and immune evasion. This multidisciplinary effort will encompass aspects of genetics, tumor cell biology, and immunology that are pertinent to the understanding of this multifaceted problem.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Tolerancia Inmunológica , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología
11.
Arthritis Rheumatol ; 70(11): 1732-1744, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29855173

RESUMEN

OBJECTIVE: Rheumatoid arthritis (RA) is characterized by the activation of B cells that produce anti-citrullinated protein antibodies (ACPAs) and rheumatoid factors (RFs), but the mechanisms by which tolerance is broken in these B cells remain incompletely understood. We undertook this study to investigate whether ACPA+ and RF+ B cells break tolerance through distinct molecular mechanisms. METHODS: We developed antigen-tetramers to isolate ACPA+ and RF+ B cells and performed single-cell RNA sequencing on 2,349 B cells from 6 RA patients and 1 healthy donor to analyze their immunoglobulin repertoires and transcriptional programs. Prominent immunoglobulins were expressed as monoclonal antibodies and tested for autoantigen reactivity. RESULTS: ACPA+ and RF+ B cells were enriched in the peripheral blood of RA patients relative to healthy controls. Characterization of patient-derived monoclonal antibodies confirmed ACPA and RF targeting of tetramer-specific B cells at both antigen-inexperienced and affinity-matured B cell stages. ACPA+ B cells used more class-switched isotypes and exhibited more somatic hypermutations relative to RF+ B cells, and these differences were accompanied by down-regulation of CD72 and up-regulation of genes that promote class-switching and T cell-dependent responses. In contrast, RF+ B cells expressed transcriptional programs that stimulate rapid memory reactivation through multiple innate immune pathways. Coexpression analysis revealed that ACPA+ and RF+ B cell-enriched genes belong to distinct transcriptional regulatory networks. CONCLUSION: Our findings suggest that ACPA+ and RF+ B cells are imprinted with distinct transcriptional programs, which suggests that these autoantibodies associated with increased inflammation in RA arise from 2 different molecular mechanisms.


Asunto(s)
Artritis Reumatoide/inmunología , Linfocitos B/inmunología , Inmunidad Innata/inmunología , Linfocitos T/inmunología , Anciano , Anciano de 80 o más Años , Anticuerpos Antiproteína Citrulinada/inmunología , Afinidad de Anticuerpos/inmunología , Autoantígenos/inmunología , Autoinmunidad/inmunología , Estudios de Casos y Controles , Femenino , Regulación de la Expresión Génica/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Cambio de Clase de Inmunoglobulina/inmunología , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Factor Reumatoide/inmunología , Autotolerancia/inmunología , Análisis de Secuencia de ARN , Análisis de la Célula Individual
12.
Clin Immunol ; 193: 70-79, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29410330

RESUMEN

Seasonal influenza vaccines elicit antibody responses that can prevent infection, but their efficacy is reduced in the elderly. While a subset of elderly individuals can still mount sufficient vaccine-induced antibody responses, little is known about the properties of the vaccine-induced antibody repertoires in elderly as compared to young responders. To gain insights into the effects of aging on influenza vaccine-induced antibody responses, we used flow cytometry and a cell-barcoding method to sequence antibody heavy and light chain gene pairs expressed by individual blood plasmablasts generated in response to influenza vaccination in elderly (aged 70-89) and young (aged 20-29) responders. We found similar blood plasmablast levels in the elderly and young responders seven days post vaccination. Informatics analysis revealed increased clonality, but similar heavy chain V(D)J gene usage in the elderly as compared to young vaccine responders. Although the elderly responders exhibited decreased antibody sequence diversity and fewer consequential mutations relative to young responders, recombinant antibodies from elderly responders bound a broader range of influenza strain HAs. Thus elderly influenza vaccine responders mount plasmablast responses with restricted diversity but with an increased breadth of binding across influenza strains. Our results suggest that the ability to generate plasmablast responses encoding cross-strain binding antibodies likely represents a mechanism important to vaccine responses in the elderly.


Asunto(s)
Envejecimiento/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Células Plasmáticas/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/metabolismo , Afinidad de Anticuerpos , Diversidad de Anticuerpos , Humanos , Unión Proteica , Receptores de Antígenos de Linfocitos B/genética , Vacunación , Adulto Joven
13.
Eur J Immunol ; 48(5): 874-884, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29369345

RESUMEN

Idiopathic pulmonary arterial hypertension (IPAH) is a devastating pulmonary vascular disease in which autoimmune and inflammatory phenomena are implicated. B cells and autoantibodies have been associated with IPAH and identified as potential therapeutic targets. However, the specific populations of B cells involved and their roles in disease pathogenesis are not clearly defined. We aimed to assess the levels of activated B cells (plasmablasts) in IPAH, and to characterize recombinant antibodies derived from these plasmablasts. Blood plasmablasts are elevated in IPAH, remain elevated over time, and produce IgA autoantibodies. Single-cell sequencing of plasmablasts in IPAH revealed repertoires of affinity-matured antibodies with small clonal expansions, consistent with an ongoing autoimmune response. Recombinant antibodies representative of these clonal lineages bound known autoantigen targets and displayed an unexpectedly high degree of polyreactivity. Representative IPAH plasmablast recombinant antibodies stimulated human umbilical vein endothelial cells to produce cytokines and overexpress the adhesion molecule ICAM-1. Together, our results demonstrate an ongoing adaptive autoimmune response involving IgA plasmablasts that produce anti-endothelial cell autoantibodies in IPAH. These antibodies stimulate endothelial cell production of cytokines and adhesion molecules, which may contribute to disease pathogenesis. These findings suggest a role for mucosally-driven autoimmunity and autoimmune injury in the pathogenesis of IPAH.


Asunto(s)
Autoanticuerpos/inmunología , Autoinmunidad/inmunología , Células Endoteliales/inmunología , Hipertensión Pulmonar Primaria Familiar/inmunología , Células Plasmáticas/inmunología , Formación de Anticuerpos/inmunología , Citocinas/biosíntesis , Hipertensión Pulmonar Primaria Familiar/sangre , Hipertensión Pulmonar Primaria Familiar/patología , Femenino , Células Endoteliales de la Vena Umbilical Humana/inmunología , Humanos , Molécula 1 de Adhesión Intercelular/biosíntesis , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Células Plasmáticas/citología
14.
Arthritis Rheumatol ; 68(10): 2372-83, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27273876

RESUMEN

OBJECTIVE: The disease process in rheumatoid arthritis (RA) starts years before the clinical diagnosis is made, and elevated levels of disease-specific autoantibodies can be detected during this period. Early responses to known or novel autoantigens likely drive the eventual production of pathogenic autoimmunity. Importantly, the presence of disease-specific autoantibodies can identify individuals who are at high risk of developing RA but who do not currently have arthritis. The goal of the current study was to characterize plasmablasts from individuals at risk of developing RA. METHODS: We investigated antibody-secreting plasmablasts derived from a well-characterized cohort of individuals who were at risk of developing RA, based on RA-related serum autoantibody positivity, as compared to patients with early (<1 year) seropositive RA as well as healthy control subjects. The plasmablast antibody repertoires of at-risk subjects were analyzed using DNA barcode-based methods with paired heavy- and light-chain gene sequencing. Cells were single-cell sorted, the cell- and plate-specific DNA barcodes were sequentially added, and next-generation sequencing was performed. RESULTS: Total plasmablast levels were similar in the antibody-positive (1%) and control (0.4-1.6%) groups. However, increased frequencies of IgA+ versus IgG+ plasmablasts were observed in the antibody-positive group (39% IgA+ and 37% IgG+) as compared to other groups (1-9% IgA+ and 71-87% IgG+). Paired antibody sequences from antibody-positive subjects revealed cross-isotype clonal families and similar sequence characteristics in the IgA and IgG plasmablast repertoires. Antibody-positive individuals also demonstrated elevated serum levels of IgA isotype anti-cyclic citrullinated peptide 3 antibodies. CONCLUSION: The IgA plasmablast dominance in these antibody-positive individuals suggests that a subset of RA-related autoantibodies may arise from mucosal immune responses and may be involved in early disease pathogenesis in individuals who are at risk of developing RA.


Asunto(s)
Artritis Reumatoide/inmunología , Inmunoglobulina A/inmunología , Péptidos Cíclicos/inmunología , Células Plasmáticas/inmunología , Factor Reumatoide/inmunología , Adulto , Autoanticuerpos/genética , Autoanticuerpos/inmunología , Femenino , Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Genes de las Cadenas Ligeras de las Inmunoglobulinas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoglobulina A/genética , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Riesgo , Análisis de Secuencia de ADN
15.
Arthritis Rheumatol ; 66(10): 2706-15, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24965753

RESUMEN

OBJECTIVE: A hallmark of rheumatoid arthritis (RA) is the production of autoantibodies, including anti-citrullinated protein antibodies (ACPAs). Nevertheless, the specific targets of these autoantibodies remain incompletely defined. During an immune response, B cells specific for the inciting antigen(s) are activated and differentiate into plasmablasts, which are released into the blood. We undertook this study to sequence the plasmablast antibody repertoire to define the targets of the active immune response in RA. METHODS: We developed a novel DNA barcoding method to sequence the cognate heavy- and light-chain pairs of antibodies expressed by individual blood plasmablasts in RA. The method uses a universal 5' adapter that enables full-length sequencing of the antibodies' variable regions and recombinant expression of the paired antibody chains. The sequence data sets were bioinformatically analyzed to generate phylogenetic trees that identify clonal families of antibodies sharing heavy- and light-chain VJ sequences. Representative antibodies were expressed, and their binding properties were characterized using anti-cyclic citrullinated peptide 2 (anti-CCP-2) enzyme-linked immunosorbent assay (ELISA) and antigen microarrays. RESULTS: We used our sequencing method to generate phylogenetic trees representing the antibody repertoires of peripheral blood plasmablasts from 4 individuals with anti-CCP+ RA, and recombinantly expressed 14 antibodies that were either "singleton" antibodies or representative of clonal antibody families. Anti-CCP-2 ELISA identified 4 ACPAs, and antigen microarray analysis identified ACPAs that differentially targeted epitopes on α-enolase, citrullinated fibrinogen, and citrullinated histone H2B. CONCLUSION: Our data provide evidence that autoantibodies targeting α-enolase, citrullinated fibrinogen, and citrullinated histone H2B are produced by the ongoing activated B cell response in, and thus may contribute to the pathogenesis of, RA.


Asunto(s)
Artritis Reumatoide/inmunología , Autoanticuerpos/sangre , Linfocitos B/inmunología , Código de Barras del ADN Taxonómico , Células Plasmáticas/inmunología , Artritis Reumatoide/sangre , Artritis Reumatoide/genética , Epítopos/genética , Humanos
16.
Clin Immunol ; 152(1-2): 77-89, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24589749

RESUMEN

Infection by Staphylococcus aureus is on the rise, and there is a need for a better understanding of host immune responses that combat S. aureus. Here we use DNA barcoding to enable deep sequencing of the paired heavy- and light-chain immunoglobulin genes expressed by individual plasmablasts derived from S. aureus-infected humans. Bioinformatic analysis of the antibody repertoires revealed clonal families of heavy-chain sequences and enabled rational selection of antibodies for recombinant expression. Of the ten recombinant antibodies produced, seven bound to S. aureus, of which four promoted opsonophagocytosis of S. aureus. Five of the antibodies bound to known S. aureus cell-surface antigens, including fibronectin-binding protein A. Fibronectin-binding protein A-specific antibodies were isolated from two independent S. aureus-infected patients and mediated neutrophil killing of S. aureus in in vitro assays. Thus, our DNA barcoding approach enabled efficient identification of antibodies involved in protective host antibody responses against S. aureus.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/genética , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Células 3T3 , Adhesinas Bacterianas/inmunología , Animales , Formación de Anticuerpos/inmunología , Secuencia de Bases , Código de Barras del ADN Taxonómico , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Ligeras de Inmunoglobulina/inmunología , Ratones , Neutrófilos/inmunología , Fagocitosis/inmunología , Proteínas Recombinantes/inmunología , Análisis de Secuencia de ADN/métodos
17.
Clin Immunol ; 151(1): 55-65, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24525048

RESUMEN

We developed a DNA barcoding method to enable high-throughput sequencing of the cognate heavy- and light-chain pairs of the antibodies expressed by individual B cells. We used this approach to elucidate the plasmablast antibody response to influenza vaccination. We show that >75% of the rationally selected plasmablast antibodies bind and neutralize influenza, and that antibodies from clonal families, defined by sharing both heavy-chain VJ and light-chain VJ sequence usage, do so most effectively. Vaccine-induced heavy-chain VJ regions contained on average >20 nucleotide mutations as compared to their predicted germline gene sequences, and some vaccine-induced antibodies exhibited higher binding affinities for hemagglutinins derived from prior years' seasonal influenza as compared to their affinities for the immunization strains. Our results show that influenza vaccination induces the recall of memory B cells that express antibodies that previously underwent affinity maturation against prior years' seasonal influenza, suggesting that 'original antigenic sin' shapes the antibody response to influenza vaccination.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Inmunoglobulina G/inmunología , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Ligeras de Inmunoglobulina/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Antígenos Virales/inmunología , Linfocitos B/inmunología , Hemaglutininas Virales/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoglobulina G/biosíntesis , Cadenas Pesadas de Inmunoglobulina/biosíntesis , Cadenas Ligeras de Inmunoglobulina/biosíntesis , Memoria Inmunológica , Subtipo H1N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Datos de Secuencia Molecular , Tipificación Molecular , Vacunación , Vacunas de Subunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...